Estrellas compactas

    Las estrellas compactas (en algunas ocasiones Objeto compacto) se refiere colectivamente a enanas blancas, estrellas de neutrones, estrellas de quarks, estrellas de preones (estos últimos hipotéticos), púlsares, magnetares, estrellas-Q| y a agujeros negros.
   A diferencia de una estrella típica, no contrarresta a la gravedad mediante la presión generada por reacciones de fusión nuclear en su interior. Tales objetos son, de hecho, el resultado del agotamiento del combustible nuclear de las estrellas. Por ello también son frecuentemente denominadas como remanentes estelares. Sin ninguna fuente de energía que luche contra el colapso estas estrellas muertas están comprimidas al máximo de lo que permite su masa. Se mantienen estables sujetas por fuerzas nucleares de origen cuántico. A tan elevadas densidades, la materia se halla en un estado que se denomina degenerado. En casos extremos el objeto es incapaz de sostenerse a sí mismo formando así una singularidad espaciotemporal. Dependiendo de la masa inicial de la estrella y de cuanta masa haya perdido o ganado a lo largo de su vida el fin de las reacciones nucleares trae consigo la aparición de un tipo u otro de objeto compacto.
    Enanas blancas:   Ya explicadas, ir a enanas blancas
    Estrella de neutrones: Es un remanente estelar dejado por una estrella supergigante después de agotar el combustible nuclear en su núcleo y explosionar como una supernova tipo II, Tipo IB o Tipo IC. Como su nombre indica, este tipo de estrellas está compuesto principalmente de neutrones, con otro tipo de materiales tanto en su corteza sólida hecha de hierro, como en su interior, que puede contener tanto protones y electrones, como piones y kaones. La masa original de la supernova debe ser mayor que 9-10 masas solares y menor que un cierto valor que depende de la metalicidad. Para masas menores que 9-10 masas solares, la estrella degenera en una enana blanca, formando a su alrededor una nebulosa planetaria, mientras que para masas mayores al límite superior, la estrella degenera en un agujero negro.
La típica estrella de neutrones tiene una masa entre 1,35 y 2,1 masas solares, con un radio correspondiente de 20 y 10 km.
Si una enana blanca llega hasta el límite de Chandrasekhar, que es de 1,44 masas solares, ésta se colapsa para convertirse en estrella de neutrones. 

      Pulsar: Es una estrella de neutrones que emite radiación pulsante periódica. Los pulsares poseen un intenso campo magnético que induce la emisión de estos pulsos de radiación electromagnética a intervalos regulares relacionados con el período de rotación del objeto. Las estrellas de neutrones pueden girar sobre sí mismas hasta varios cientos de veces por segundo. Un punto de su superficie puede estar moviéndose alrededor del centro a velocidades de hasta 70.000 km/s. De hecho, las estrellas de neutrones que giran muy rápidamente se achatan en los polos, a pesar de su enorme gravedad, debido a esta velocidad vertiginosa. El efecto combinado de la enorme densidad de estas estrellas con su intensísimo campo magnético (provocado por los protones y electrones de la superficie girando alrededor del centro a enormes velocidades) provoca que, cuando se acercan a la estrella partículas desde el exterior (por ejemplo moléculas de gas o polvo interestelar), estas aceleren a velocidades extremas y realicen espirales cerradísimas hacia los polos magnéticos de la estrella. Por ello los polos magnéticos son lugares muy violentos en una estrella de neutrones: emiten chorros de radiación que puede ser de radio, rayos X o rayos gamma, como si fueran cañones de radiación electromagnética muy intensa y muy dirigida. Por razones no muy bien comprendidas, los polos magnéticos de muchas estrellas de neutrones no coinciden con el eje de giro. El resultado es que los "cañones de radiación" de los polos magnéticos no apuntan siempre en la misma dirección, sino que giran con la estrella. Es posible entonces que, mirando hacia un punto determinado del firmamento, recibamos un "chorro" de rayos X durante un instante. El chorro aparece cuando el polo magnético de la estrella mira hacia la Tierra, pero deja de apuntarnos en una milésima de segundo según la estrella gira, para aparecer de nuevo cuando el mismo polo vuelve a apuntar hacia la Tierra. Lo que percibimos entonces desde ese punto del cielo son pulsos de radiación con un período muy exacto, repetidos una y otra y otra vez (lo que se conoce como "efecto faro") cada vez que el chorro se orienta hacia nuestro planeta. Por eso este tipo de estrellas de neutrones "pulsantes" se denominan púlsares (del inglés Pulsating star, "estrella pulsante"). Si la estrella está orientada de manera adecuada, podemos detectarlas y analizar su velocidad de giro. La pulsación de estos objetos lógicamente disminuye a la vez que lo hace su rotación. A pesar de ello, la extrema constancia de ese período, en algunos pulsares, ha hecho que sean usados para calibrar relojes de precisión. 

      Magnetar: Se trata de una variedad de púlsar cuya característica principal es la expulsión, en un breve periodo de tiempo (equivalente a la duración de un relámpago), de enormes cantidades de alta energía en forma de rayos X y rayos gamma. 

    Estrella de quarks: O estrella extraña es usado para denominar un tipo de estrella exótica en la cual, debido a la alta densidad, la materia existe en forma de quarks desconfinados. Lo anterior es comúnmente llamado un plasma de quarks-gluones. Este estado de la materia podría encontrarse en regiones internas de estrellas de neutrones, o bien componer la totalidad de la estrella. En el segundo caso, la materia no se mantendría unida por la atracción gravitacional, sino por la interacción fuerte entre los quarks. En este caso, la estrella se dice autoligada. 

    Agujero negro: Es una región del espacio-tiempo provocada por una gran concentración de masa en su interior, con enorme aumento de la densidad, lo que provoca un campo gravitatorio tal que ninguna partícula material, ni siquiera los fotones de luz, puede escapar de dicha región. La curvatura del espacio-tiempo o «gravedad de un agujero negro» provoca una singularidad envuelta por una superficie cerrada, llamada horizonte de sucesos. Esto es debido a la gran cantidad de energía del objeto celeste. El horizonte de sucesos separa la región de agujero negro del resto del Universo y es la superficie límite del espacio a partir de la cual ninguna partícula puede salir, incluyendo la luz. Dicha curvatura es estudiada por la relatividad general, la que predijo la existencia de los agujeros negros y fue su primer indicio. En los años 70, Hawking y Ellis demostraron varios teoremas importantes sobre la ocurrencia y geometría de los agujeros negros. Previamente, en 1963, Roy Kerr había demostrado que en un espacio-tiempo de cuatro dimensiones todos los agujeros negros debían tener una geometría cuasi-esférica determinada por tres parámetros: su masa M, su carga eléctrica total e y su momento angular L. Se cree que en el centro de la mayoría de las galaxias, entre ellas la Vía Láctea, hay agujeros negros supermasivos. La existencia de agujeros negros está apoyada en observaciones astronómicas, en especial a través de la emisión de rayos X por estrellas binarias y galaxias activas. 

    Estrella de preones: Es una hipotética estrella compacta formada por preones, unas partículas subatómicas teóricas que compondrían los quarks y leptones. Se predice que las estrellas de preones poseerían enormes densidades, del orden de 1020 g/cm3, una densidad intermedia entre las estrellas de quarks y los agujeros negros. Las densidades son tan gigantescas, que una estrella de preones que tuviera la masa de la Tierra tendría el tamaño de una pelota de tenis. Esta clase de objetos podrían ser detectados, en principio, mediante lentes gravitacionales o con rayos gamma. La existencia de las estrellas de preones podría explicar algunas incongruencias observacionales que actualmente se solucionan mediante la hipótesis de la materia oscura. Las estrellas de preones se originarían a causa de explosiones de supernova o en el big bang, aunque sería harto complicado explicar la formación de estos objetos tan pesados y compactos. 

    Estrella Q:  Es una estrella compacta de neutrones con un exótico estado de materia . El termino «Q» no debe aociarse con estrella de quarks , ya que «Q» no se refiere a quark sino a un número determinado de partículas (quantum). Las estrellas-Q son confundidas con agujeros negros de masa estelar. Un candidato de este tipo seria el objeto compacto en el sistema de V404 Cygni.

 

Estrellas de energía oscura

Estrellas de energía oscura: en lugar de agujeros negros,  a la vez que explicaría la energía y la materia oscuras del Universo.

Nova

Una nova: es una explosión termonuclear causada por la acumulación de hidrógeno en la superficie de una enana blanca.
Formación de una nova. 
En un sistema binario cerrado, formado por una enana blanca y una estrella evolucionada (es decir, que ya ha dejado la secuencia principal), se produce transferencia (acreción) de masa de la compañera a la enana, debido a la transformación de aquella en gigante roja, lo que pasa es que su expansión y el consecuente llenado de su lóbulo de Roche. Esta superficie equipotencial limita las zonas de influencia de cada estrella; cuando material de la gigante la supera. El material acretado, compuesto principalmente por hidrógeno y helio, es compactado en la superficie de la enana blanca debido a la intensa fuerza gravitatoria en la superficie de ésta. A medida que más material se va acumulando, se calienta cada vez más, hasta que alcanza la temperatura crítica para la ignición de la fusión nuclear. Entonces se transforman rápidamente grandes cantidades de hidrógeno y helio en elementos más pesados, en un proceso análogo al que ocurre en el núcleo de las estrellas de secuencia principal, aunque en estos casos se trata de procesos estables, que duran largos periodos de tiempo; en las novas, en cambio, es un evento violento.

La enorme cantidad de energía liberada por este proceso produce un destello de radiación electromagnética muy brillante, pero de corta duración. Este destello, que se produce en escalas de tiempo de días, dio origen al nombre nova, que en latín significa «nueva»: al ocurrir una nova, los astrónomos antiguos veían la aparición de una nueva estrella en el cielo nocturno. El término fue usado por primera vez por el astrónomo Tycho Brahe al observar no una nova sino una supernova, pero no fue hasta tiempo después cuando se reconocieron las diferencias entre las supernovas y las novas, intrínsecamente mucho menos energéticas.

Una enana blanca puede generar múltiples eventos de nova, mientras siga habiendo masa disponible en la estrella compañera para la acreción. Progresivamente, la estrella donante puede ver agotado su material, o la enana blanca puede producir una nova lo suficientemente poderosa como para destruir el sistema por completo. Este último caso es similar al de una supernova tipo Ia. Sin embargo, las supernovas involucran procesos diferentes y energías mucho mayores, del orden de 1044 J, mientras que las explosiones típicas de novas pueden liberar unos 1038 - 1039 J, por lo que no deberían ser confundidas.

A veces, las novas pueden ser visibles a simple vista. El caso más reciente es la nova Cygni 1976, que apareció el 29 de agosto de 1975 en la constelación del Cisne unos 5 grados al norte de Deneb (α Cygni), y alcanzó una magnitud de 2.0, tan brillante como la propia Deneb.

Las novas contribuyen a la nucleosíntesis de algunos elementos que no se producen igual que en los ciclos habituales. En principio, queman de forma explosiva su hidrógeno a través del ciclo CNO pero las mayores energías a la que se producen esos estallidos hacen que el ciclo derive en otra reacción distinta.

Novas detectadas

Año  Nova  Brillo máximo

Año  Nova  Brillo máximo

Año  Nova  Brillo máximo

1891 T Aurigae 3.8 mag
1898 V1059 Sagittarii 4.5 mag
1899 V606 Aquilae  5.5 mag
1901 GK Persei  0.2 mag
1903 Nova Geminorum  6 mag
1905 Nova Aquilae  7.3 mag
1910 Nova Lacertae  4.6 mag
1912 Nova Geminorum  3.5 mag
1918 V603 Aquilae -1.8 mag
1919 Nova Lyrae  7.4 mag
1919 Nova Ophiuchi  7.4 mag
1920 Nova Cygni  2.0 mag

1925 RR Pictoris 1.2 mag
1934 DQ Herculis 1.4 mag
1936 CP Lacertae 2.1 mag
1939 BT Monocerotis 4.5 mag
1942 CP Puppis 0.3 mag
1943 Nova Aquilae  6.1 mag
1950 DK Lacertae 5.0 mag
1960 V446 Herculis 2.8 mag
1963 V533 Herculis 3 mag
1970 FH Serpentis 4 mag
1975 V1500 Cygni 2 mag
1975 V373 Scuti 6 mag

1976 NQ Vulpeculae 6 mag
1978 V1668 Cygni 6 mag
1984 QU Vulpeculae 5.2 mag
1986 V842 Centauri 4.6 mag
1991 V838 Herculis 5.0 mag
1992 V1974 Cygni 4.2 mag
1999 V1494 Aquilae 5.03 mag
1999 V382 Velorum 2.6 mag
2006 RS Ophiuchi 4.5 mag
2007 V1280 Scorpii ~3.7 mag

Supernova


Una supernova: (del latín nova, «nueva») es una explosión estelar que puede manifestarse de forma muy notable, incluso a simple vista, en lugares de la esfera celeste donde antes no se había detectado nada en particular. Por esta razón, a eventos de esta naturaleza se los llamó inicialmente stellae novae («estrellas nuevas») o simplemente novae. Con el tiempo se hizo la distinción entre fenómenos aparentemente similares pero de luminosidad intrínseca muy diferente; los menos luminosos continuaron llamándose novae (novas), en tanto que a los más luminosos se les agregó el prefijo «super-».
    Las supernovas producen destellos de luz intensísimos que pueden durar desde varias semanas a varios meses. Se caracterizan por un rápido aumento de la intensidad hasta alcanzar un máximo (mas que el resto de la galaxia) para luego decrecer en brillo de forma más o menos suave hasta desaparecer completamente.
    Se han propuesto varios escenarios para su origen. Pueden ser estrellas masivas que ya no pueden desarrollar reacciones termonucleares en su núcleo, y que son incapaces de sostenerse por la presión de degeneración de los electrones, lo que las lleva a contraerse repentinamente (colapsar) y generar, en el proceso, una fuerte emisión de energía. Otro proceso más violento aún, capaz de generar destellos incluso mucho más intensos, puede suceder cuando una enana blanca miembro de un sistema binario cerrado, recibe suficiente masa de su compañera como para superar el límite de Chandrasekhar y proceder a la fusión instantánea de todo su núcleo: esto dispara una explosión termonuclear que expulsa casi todo, si no todo, el material que la formaba.
    La explosión de supernova provoca la expulsión de las capas externas de la estrella por medio de poderosas ondas de choque, enriqueciendo el espacio que la rodea con elementos pesados. Los restos eventualmente componen nubes de polvo y gas. Cuando el frente de onda de la explosión alcanza otras nubes de gas y polvo cercanas, las comprime y puede desencadenar la formación de nuevas nebulosas solares que originan, después de cierto tiempo, nuevos sistemas estelares (quizá con planetas, al estar las nebulosas enriquecidas con los elementos procedentes de la explosión).
    Estos residuos estelares en expansión se denominan remanentes y pueden tener o no un objeto compacto en su interior. Dicho remanente terminará por diluirse en el medio interestelar al cabo de millones de años. Un ejemplo es RCW 86.
    Las supernovas pueden liberar varias veces 1044 J de energía. Esto ha resultado en la adopción del foe (1044 J) como unidad estándar de energía en el estudio de supernovas.

Supernovas destacadas

Las fechas que se dan señalan el momento en que fueron observadas. En realidad, las explosiones ocurrieron mucho antes, pues su luz ha tardado cientos o miles de años en llegar hasta la Tierra.
185 – SN 185 – referencias en China y posiblemente en Roma. Análisis de datos tomados en rayos X por el observatorio Chandra sugieren que los restos de la supernova RCW 86 corresponden con este evento histórico.
1006 – SN 1006 – Supernova muy brillante; referencias encontradas en Egipto, Iraq, Italia, Suiza, China, Japón y , posiblemente, Francia y Siria.
1054 – SN 1054 – Fue la que originó la actual Nebulosa del Cangrejo, se tiene referencia de ella por los astrónomos Chinos y, seguramente, por los nativos americanos.
1181 – SN 1181 – Dan noticia de ella los astrónomos chinos y japoneses. La supernova estalla en Casiopea y deja como remanente a la estrella de neutrones 3C 58 la cual es candidata a ser estrella extraña.
1572 – SN 1572 – Supernova en Casiopea, observada por Tycho Brahe y Jerónimo Muñoz, descrita en el libro del primero De Nova Stella donde se usa por primera vez el término "nova".
1604 – SN 1604 – Supernova en Ophiuchus, observada por Johannes Kepler; es la última supernova vista en la Vía Láctea.
1885 – S Andromedae en la Galaxia de Andrómeda, descubierta por Ernst Hartwig.
1987 – Supernova 1987A en la Gran Nube de Magallanes, observada unas horas después de su explosión, fue la primera oportunidad de poner a prueba a través de las observaciones directas las teorías modernas sobre la formación de las supernovas.
– Cassiopeia A – Supernova en Casiopea, no observada en la Tierra, pero se estima que explotó hace unos 300 años. Es el remanente más luminoso en la banda de radio.
2005 - 2005ap - Esta supernova de tipo II es por el momento la más brillante jamas observada. Llegó a ser hasta ocho veces más brillante que la vía láctea. Esto la hace superar en casi dos veces a SN 2006gy.
2006 – SN 2006gy en el núcleo de la galaxia NGC 1260, es la segunda más grande que se ha podido observar hasta la fecha, cinco veces más luminosa que las supernovas observadas anteriormente, su resplandor fue de 50.000 millones de veces la del Sol. Se originó por la explosión de una estrella de 150 masas solares.

Galileo usó la supernova 1604 como una prueba contra el dogma aristotélico imperante en esa época, de que el cielo era inmutable.